Every roller bearing design has characteristic features that make it especially suitable for specific bearing applications. It is not possible to draw up generally valid rules for the selection of the bearing type as several factors usually have to be considered and weighed up. In addition to load and speed, attention must also normally be paid to influences such as temperature, lubrication, vibrations, fitting, maintenance etc. In many cases, at least one of the main dimensions of the bearing – usually the bore diameter – is already defined by the design of the adjacent construction.
Rolling bearings for predominantly radial loads are described as radial bearings. Most radial bearings can support combined loads, e.g. deep groove ball bearings, angular contact ball bearings, tapered roller bearings or spherical roller bearings. Cylindrical roller bearings N, NU, most needle roller bearings, drawn cup needle roller bearings and needle roller and cage assemblies can only support radial loads.
Rolling bearings for predominantly axial loads are described as axial bearings. Axial spherical roller bearings and single direction axial angular contact ball bearings can support combined axial and radial loads. The other types of axial bearings are only suitable for axial loads.
If there is little radial space available, bearings with a low cross-sectional height must be selected, such as needle roller and cage assemblies; needle roller bearings with or without an inner ring, deep groove ball bearings and spherical roller bearings of certain series.
If there is little axial space available, bearings series including single row cylindrical roller bearings, deep groove ball bearings or angular contact ball bearings are suitable for radial and combined loads. For axial loads, axial needle roller and cage assemblies, axial needle roller bearings or axial deep groove ball bearings are used.
A further feature is how the bearings guide a shaft. There are bearings that allow axial displacements, bearings that guide a shaft in one or both axial directions and bearings that allow angular adjustment and thus tolerate misalignment of the adjacent construction.
The bearing size is determined primarily by the magnitude and type of load – dynamic or static – the bearing load carrying capacity and the requirements for operating life and operational reliability of the bearing arrangement. Rotating bearings are subjected to dynamic stresses. Bearings are subjected to static stresses if there is only very slow relative motion between the bearing rings, if swivel motion occurs or if loads occur in a stationary condition. Where external dimensions are identical, roller bearings can in general be subjected to higher loads than ball bearings. As a result, ball bearings are usually used for small and moderate loads, whilst roller bearings are frequently used for higher loads and larger shaft diameters.